Moving lattice kinks and pulses: an inverse method.

نویسندگان

  • S Flach
  • Y Zolotaryuk
  • K Kladko
چکیده

We develop a general mapping from given kink or pulse shaped traveling-wave solutions including their velocity to the equations of motion on one-dimensional lattices which support these solutions. We apply this mapping-by definition an inverse method-to acoustic solitons in chains with nonlinear intersite interactions, nonlinear Klein-Gordon chains, reaction-diffusion equations, and discrete nonlinear Schrödinger systems. Potential functions can be found in a unique way provided the pulse shape is reflection symmetric and pulse and kink shapes are at least C2 functions. For kinks we discuss the relation of our results to the problem of a Peierls-Nabarro potential and continuous symmetries. We then generalize our method to higher dimensional lattices for reaction-diffusion systems. We find that increasing also the number of components easily allows for moving solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving kinks and nanopterons in the nonlinear Klein-Gordon lattice

We study moving topological solitons (kinks and antikinks) in the nonlinear KleinGordon chain. These solitons are shown to exist with both monotonic (non-oscillating) and oscillating asymptotics (tails). Using the pseudo-spectral method, the (anti)kink solutions with oscillating background (so-called nanopterons) are found as travelling waves of permanent profile propagating with constant veloc...

متن کامل

Square Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm

 In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric  split-step Fourier (SSF) and  fourth order Runge Kutta (RK4) which is an accurate method to solve the general  nonlinear...

متن کامل

F Ur Mathematik in Den Naturwissenschaften Leipzig Topological Discrete Kinks Topological Discrete Kinks

A spatially discrete version of the general kink-bearing nonlinear Klein-Gordon model in (1 + 1) dimensions is constructed which preserves the topological lower bound on kink energy. It is proved that, provided the lattice spacing h is suuciently small, there exist static kink solutions attaining this lower bound centred anywhere relative to the spatial lattice. Hence there is no Peierls-Nabarr...

متن کامل

Ultradiscrete kinks with supersonic speed in a layered crystal with realistic potentials.

In this paper we develop a dynamical model of the propagating nonlinear localized excitations, supersonic kinks, in the cation layer in a silicate mica crystal. We start from purely electrostatic Coulomb interaction and add the Ziegler-Biersack-Littmark short-range repulsive potential and the periodic potential produced by other atoms of the lattice. The proposed approach allows the constructio...

متن کامل

Development of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature

A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 59 5 Pt B  شماره 

صفحات  -

تاریخ انتشار 1999